Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Neurol Sci ; 444: 120497, 2022 Nov 24.
Article in English | MEDLINE | ID: covidwho-2243520

ABSTRACT

BACKGROUND: SARS-CoV-2 infection may be associated with uncommon complications such as intracerebral hemorrhage (ICH), with a high mortality rate. We compared a series of hospitalized ICH cases infected with SARS-CoV-2 with a non-SARS-CoV-2 infected control group and evaluated if the SARS-CoV-2 infection is a predictor of mortality in ICH patients. METHODS: In a multinational retrospective study, 63 cases of ICH in SARS-CoV-2 infected patients admitted to 13 tertiary centers from the beginning of the pandemic were collected. We compared the clinical and radiological characteristics and in-hospital mortality of these patients with a control group of non-SARS-CoV-2 infected ICH patients of a previous cohort from the country where the majority of cases were recruited. RESULTS: Among 63 ICH patients with SARS-CoV-2 infection, 23 (36.5%) were women. Compared to the non-SARS-CoV-2 infected control group, in SARS-CoV-2 infected patients, ICH occurred at a younger age (61.4 ± 18.1 years versus 66.8 ± 16.2 years, P = 0.044). These patients had higher median ICH scores ([3 (IQR 2-4)] versus [2 (IQR 1-3)], P = 0.025), a more frequent history of diabetes (34% versus 16%, P = 0.007), and lower platelet counts (177.8 ± 77.8 × 109/L versus 240.5 ± 79.3 × 109/L, P < 0.001). The in-hospital mortality was not significantly different between cases and controls (65% versus 62%, P = 0.658) in univariate analysis; however, SARS-CoV-2 infection was significantly associated with in-hospital mortality (aOR = 4.3, 95% CI: 1.28-14.52) in multivariable analysis adjusting for potential confounders. CONCLUSION: Infection with SARS-CoV-2 may be associated with increased odds of in-hospital mortality in ICH patients.

2.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1795260.v2

ABSTRACT

Purpose This study aimed to investigate the rate of COVID-19 breakthrough infection and adverse events in medical students.Methods Iranian medical students receiving two doses of COVID-19 vaccines were included in this retrospective cohort study. The medical team gathered the demographic characteristics, comorbidities, type of vaccine, adverse events following vaccination, and history of COVID-19 infection data through a phone interview. The frequency of adverse events and breakthrough infection was stratified by vaccine type (ChAdOx1-S, Gam-COVID-Vac, and BIBP-CorV).Results A total of 3591 medical students enrolled in this study, of which 57.02% were females, with a mean age of 23.31 + 4.87. A PCR-confirmed and suspicious-for-COVID-19 breakthrough infection rate of 4.51% and 7.02% was detected, respectively. There was no significant relation between breakthrough infection and gender, BMI, blood groups, and comorbidities. However, there was a significant difference in breakthrough infection rate among different types of vaccines (P = 0.001) and history of COVID-19 infection (P = 0.001). A total of 16 participants were hospitalized for COVID-19 infection, and no severe infection or death was observed in the studied population.Conclusion Vaccination prevented severe COVID-19 infection, although a high breakthrough infection rate was evident among Iran medical students during the Delta variant’s peak. Vaccine effectiveness may be fragile during emerging new variants and in high-exposure settings. Moreover, adverse events are rare, and the benefits of vaccination outweigh the side effects. However, many limitations challenged this study, and the results should be cautious.


Subject(s)
COVID-19
3.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.05.21.492554

ABSTRACT

The Omicron lineage of SARS-CoV-2, first described in November 2021, spread rapidly to become globally dominant and has split into a number of sub-lineages. BA.1 dominated the initial wave but has been replaced by BA.2 in many countries. Recent sequencing from South Africa's Gauteng region uncovered two new sub-lineages, BA.4 and BA.5 which are taking over locally, driving a new wave. BA.4 and BA.5 contain identical spike sequences and, although closely related to BA.2, contain further mutations in the receptor binding domain of spike. Here, we study the neutralization of BA.4/5 using a range of vaccine and naturally immune serum and panels of monoclonal antibodies. BA.4/5 shows reduced neutralization by serum from triple AstraZeneca or Pfizer vaccinated individuals compared to BA.1 and BA.2. Furthermore, using serum from BA.1 vaccine breakthrough infections there are likewise, significant reductions in the neutralization of BA.4/5, raising the possibility of repeat Omicron infections.

4.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.02.05.22270447

ABSTRACT

Background: T cell responses to SARS-CoV-2 following infection and vaccination are less characterised than antibody responses, due to a more complex experimental pathway. Methods: We measured T cell responses in 108 healthcare workers (HCWs) in an observational cohort study, using the commercialised Oxford Immunotec T-SPOT Discovery SARS-CoV-2 assay (OI T-SPOT) and the PITCH ELISpot protocol established for academic research settings. Results: Both assays detected T cell responses to SARS-CoV-2 spike, membrane and nucleocapsid proteins. Responses were significantly lower when reported by OI T-SPOT than by PITCH ELISpot. Four weeks after two doses of either Pfizer/BioNTech BNT162b or ChAdOx1 nCoV-19 AZD1222 vaccine, the responder rate was 63% for OI T-SPOT Panels1+2 (peptides representing SARS-CoV-2 spike protein excluding regions present in seasonal coronaviruses), 69% for OI T-SPOT Panel 14 (peptides representing the entire SARS-CoV-2 spike), and 94% for the PITCH ELISpot assay. The two OI T-SPOT panels correlated strongly with each other showing that either readout quantifies spike-specific T cell responses, although the correlation between the OI T-SPOT panels and the PITCH ELISpot was moderate. Conclusion: The standardisation, relative scalability and longer interval between blood acquisition and processing are advantages of the commercial OI T-SPOT assay. However, the OI T-SPOT assay measures T cell responses at a significantly lower magnitude compared to the PITCH ELISpot assay, detecting T cell responses in a lower proportion of vaccinees. This has implications for the reporting of low-level T cell responses that may be observed in patient populations and for the assessment of T cell durability after vaccination.

5.
Reprod Biomed Online ; 43(4): 769, 2021 10.
Article in English | MEDLINE | ID: covidwho-1364423
6.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-226857.v1

ABSTRACT

Both natural infection with SARS-CoV-2 and immunization with a number of vaccines induce protective immunity. However, the ability of such immune responses to recognize and therefore protect against emerging variants is a matter of increasing importance. Such variants of concern (VOC) include isolates of lineage B1.1.7, first identified in the UK, and B1.351, first identified in South Africa. Our data confirm that VOC, particularly those with substitutions at residues 484 and 417 escape neutralization by antibodies directed to the ACE2-binding Class 1 and the adjacent Class 2 epitopes but are susceptible to neutralization by the generally less potent antibodies directed to Class 3 and 4 epitopes on the flanks RBD. To address this potential threat, we sampled a SARS-CoV-2 uninfected UK cohort recently vaccinated with BNT162b2 (Pfizer-BioNTech, two doses delivered 18-28 days apart), alongside a cohort naturally infected in the first wave of the epidemic in Spring 2020. We tested antibody and T cell responses against a reference isolate (VIC001) representing the original circulating lineage B and the impact of sequence variation in these two VOCs. We identified a reduction in antibody neutralization against the VOCs which was most evident in the B1.351 variant. However, the majority of the T cell response was directed against epitopes conserved across all three strains. The reduction in antibody neutralization was less marked in post-boost vaccine-induced than in naturally-induced immune responses and could be largely explained by the potency of the homotypic antibody response. However, after a single vaccination, which induced only modestly neutralizing homotypic antibody titres, neutralization against the VOCs was completely abrogated in the majority of vaccinees. These data indicate that VOCs may evade protective neutralising responses induced by prior infection, and to a lesser extent by immunization, particularly after a single vaccine, but the impact of the VOCs on T cell responses appears less marked. The results emphasize the need to generate high potency immune responses through vaccination in order to provide protection against these and other emergent variants. We observed that two doses of vaccine also induced a significant increase in binding antibodies to spike of both SARS-CoV-1 & MERS, in addition to the four common coronaviruses currently circulating in the UK. The impact of antigenic imprinting on the potency of humoral and cellular heterotypic protection generated by the next generation of variant-directed vaccines remains to be determined.

7.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-224655.v1

ABSTRACT

Both natural infection with SARS-CoV-2 and immunization with a number of vaccines induce protective immunity. However, the ability of such immune responses to recognize and therefore protect against emerging variants is a matter of increasing importance. Such variants of concern (VOC) include isolates of lineage B1.1.7, first identified in the UK, and B1.351, first identified in South Africa. Our data confirm that VOC, particularly those with substitutions at residues 484 and 417 escape neutralization by antibodies directed to the ACE2-binding Class 1 and the adjacent Class 2 epitopes but are susceptible to neutralization by the generally less potent antibodies directed to Class 3 and 4 epitopes on the flanks RBD. To address this potential threat, we sampled a SARS-CoV-2 uninfected UK cohort recently vaccinated with BNT162b2 (Pfizer-BioNTech, two doses delivered 18-28 days apart), alongside a cohort naturally infected in the first wave of the epidemic in Spring 2020. We tested antibody and T cell responses against a reference isolate (VIC001) representing the original circulating lineage B and the impact of sequence variation in these two VOCs. We identified a reduction in antibody neutralization against the VOCs which was most evident in the B1.351 variant. However, the majority of the T cell response was directed against epitopes conserved across all three strains. The reduction in antibody neutralization was less marked in post-boost vaccine-induced than in naturally-induced immune responses and could be largely explained by the potency of the homotypic antibody response. However, after a single vaccination, which induced only modestly neutralizing homotypic antibody titres, neutralization against the VOCs was completely abrogated in the majority of vaccinees. These data indicate that VOCs may evade protective neutralising responses induced by prior infection, and to a lesser extent by immunization, particularly after a single vaccine, but the impact of the VOCs on T cell responses appears less marked. The results emphasize the need to generate high potency immune responses through vaccination in order to provide protection against these and other emergent variants. We observed that two doses of vaccine also induced a significant increase in binding antibodies to spike of both SARS-CoV-1 & MERS, in addition to the four common coronaviruses currently circulating in the UK. The impact of antigenic imprinting on the potency of humoral and cellular heterotypic protection generated by the next generation of variant-directed vaccines remains to be determined.

8.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.06.24.20135038

ABSTRACT

Background Personal protective equipment (PPE) and social distancing are key measures designed to mitigate the risk of occupational SARS-CoV-2 infection in hospitals. Why healthcare workers nevertheless remain at increased risk is uncertain. Methods We conducted voluntary Covid-19 testing programmes for symptomatic and asymptomatic staff at a large UK teaching hospital using nasopharyngeal PCR testing and immunoassays for IgG antibodies. A positive result by either modality was used as a composite outcome. Risk factors for Covid-19 were investigated using multivariable logistic regression. Results 1083/9809(11.0%) staff had evidence of Covid-19 at some time and provided data on potential risk-factors. Staff with a confirmed household contact were at greatest risk (adjusted odds ratio [aOR] 4.63 [95%CI 3.30-6.50]). Higher rates of Covid-19 were seen in staff working in Covid-19-facing areas (21.2% vs. 8.2% elsewhere) (aOR 2.49 [2.00-3.12]). Controlling for Covid-19-facing status, risks were heterogenous across the hospital, with higher rates in acute medicine (1.50 [1.05-2.15]) and sporadic outbreaks in areas with few or no Covid-19 patients. Covid-19 intensive care unit (ICU) staff were relatively protected (0.46 [0.29-0.72]). Positive results were more likely in Black (1.61 [1.20-2.16]) and Asian (1.58 [1.34-1.86]) staff, independent of role or working location, and in porters and cleaners (1.93 [1.25-2.97]). Contact tracing around asymptomatic staff did not lead to enhanced case identification. 24% of staff/patients remained PCR-positive at [≥]6 weeks post-diagnosis. Conclusions Increased Covid-19 risk was seen in acute medicine, among Black and Asian staff, and porters and cleaners. A bundle of PPE-related interventions protected staff in high-risk ICU areas.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL